Conformations of Some αβ-Unsaturated Carbonyl Compounds. Part VII.¹ Assignments of Raman and Infrared Spectra of Dimethyl, Diethyl, and **Di-n-butyl Fumarates and Maleates**

By David A. C. Compton, William O. George,* and Alan J. Porter, School of Chemical and Physical Sciences, Kingston Polytechnic, Kingston-upon-Thames, Surrey

Raman and i.r. spectra of dimethyl, diethyl, and di-n-butyl fumarates and maleates in the liquid (or solid) state at room temperature (or above) and as frozen solids are reported together with vibrational assignments for conformers (trans, trans = trans, cis for the fumarates, cis, trans only for the maleates). Measurement of intensities of selected Raman bands at various low temperatures leads to calculation of enthalpy differences ($\Delta H^0 \pm$ standard deviation) of 396 ± 42 and 219 ± 28 cal mol⁻¹ between the high and low energy forms of the di-n-butyl and diethyl fumarates, respectively. Dimethyl fumarate is a solid at room temperature; measurement of Raman band intensities at higher temperatures leads to a corresponding value of 774 \pm 184 cal mol⁻¹. These results provide general support for a previous result based on i.r. measurements.

VARIABLE-TEMPERATURE i.r. studies of dimethyl, diethyl, and di-n-butyl fumarates and maleates have been interpreted² on the basis of trans, trans (I) and trans, cis (II) forms of the fumarates and cis,trans (III) forms of the

maleates. As in the case of esters of monocarboxylic acids 3,4 there is a need to obtain additional evidence for the presence of these conformers and to evaluate the enthalpy differences between them, and Raman

¹ Part VI, J. R. Cowles, W. G. Fateley, and W. O. George,

Preceding paper.
W. O. George and A. J. Porter, J.C.S. Perkin II, 1973, 954.
W. O. George, D. V. Hassid, and W. F. Maddans, J.C.S.

measurements may be regarded as independent of i.r. measurements in terms of experimental errors. Detailed Raman and i.r. assignments of vibrational modes in fumarates and maleates are presented here for the first time. Values of ΔH^0 for the equilibria (I) (II) based on Raman measurements are reported for comparison with values of ΔH^0 from i.r. measurements.

EXPERIMENTAL

Samples were obtained as described ² previously and purities checked by g.l.c. and i.r. measurements. Raman and i.r. studies involving use of variable-temperature sample equipment were carried out as before.⁴ Some difficulties were encountered in recording Raman spectra of methyl fumarate as a heated liquid. A sample prepared by acid-catalysed esterification was recrystallized from methanol and dried in a vacuum oven (m.p. 103.5°; lit., 101°). This was sensitive to blue and green Argon ion laser lines and was studied at low laser power (100 mW) by using wide spectrometer slits (14 cm⁻¹). On cooling the sample no time-dependent spectral changes were observed and the i.r. spectrum of a solution in CS₂ agreed with that in the literature.⁵

⁴ W. O. George, W. C. Harris, D. V. Hassid, and W. F. Mad-dams, J.C.S. Perkin II, 1974, 392.
 ⁵ ' Documentation of Molecular Spectroscopy,' Butterworths,

London, No. 1912.

RESULTS AND DISCUSSION

Fumarate Assignments.—The existence of a conformational equilibrium has consequences in the Raman and i.r. activity of fumarates. If the alkyl groups are considered as single units, the vibrational spectrum of each fumarate can be separated into two parts: first the normal modes of the skeletons (I) and (II), $4b_g$ (i.r.) + $10b_u$ (i.r.). In the case of the *cis,trans* conformer (II) the symmetry corresponds to the C_s point group and the normal modes divide as 21a' (R.pol., i.r.) + 9a'' (R.depol., i.r.). Discussion of assignments follows the considerations used for acrylates and *trans*-crotonates. The fundamental modes of the three fumarates and the observed vibrational spectra are

			Vibra	tional spectra o	of alkyl	fumarates (v	/cm ⁻¹)		
Methyl fumarate			Ethyl fumarate			n-Butyl fumarate			
I.r.	Raman	p†	I.r.	Raman	pt	I.r.	Raman	t q	Assignment
3440w		• •	3430w		~ ·	3430w			$2 \times 1730 = 3460$
3055w. sh	3061m	SD	3060w	3060m	SD	3100w	3057m	SD	CH str., a, and b.
2990w		- r	2975m	2975s	SD SD	2955m	2957s. sh	mp	ן, אין בב - ג
2950m	2 95 9m	SD	2930 sh	2936s	sp	2930 sh	2932s	mp	
		-r	2920w	2910w. sh	SD		2910s	mp	Alkyl CH str.
2900sh			2895sh	,	7	2890 sh		1	j
2840w	2851w	SD	2880w	2873w, sh	sp	2870w	2871s	sp	
		-1	2865w	,				ľ	5
1731s	1730s	SD	1720s	1726s	SD	1721s	1730s	SD	C=0 str., a, and b.
	$1655 \mathrm{s}$ \wedge	sp		1663s木	sp		1662s A	sp	C=C str., a
1640w↓	1640s↓	sp	1641w↓	1644m, $\operatorname{sh} \downarrow$	sp	$1640\mathrm{w}\psi$	$1645 { m sh} \downarrow$	sp	C==C str., a'
,	•	-	$1472 \mathrm{sh}^{\prime}$	1477w	đp	1470m '	1470m '	1	
			1642w	1460w	dp	1460m	1462m		
	1456w	dp			1				
1438m	1435w	sp	1443w	1450m	dp		1450	dp	Alkyl CH bend
		-	1388sh	1390w	mp	1380w	1380w	sp	
			1364m	1363w	sp		1365w	sp	}
1302s 🛧	1302w木	dp	1292s木	1300m, sh	dp	1291s∧	1300m 🛧	dp	C-O as. str., b_{μ}
1270sb	$1275\mathrm{m}lac{1}{V}$	sp	1	1275m	\hat{mp}	$1265 \mathrm{sh}$	1277w↓	1	C-H as. bend, b,
$1260 \mathrm{m} \checkmark$	$1261\mathrm{m} ightarrow$	sp	$1256\mathrm{s}\psi$	$1259\mathrm{m}\psi$	sp	$1255\mathrm{s}\psi$	$1261 \mathrm{m}\dot{\downarrow}$	sp	C-O as. str., a'
$1225\mathrm{w} angle$	•	1	$1221 \mathrm{w}$	1	1	$1220 w \downarrow$	1	1	C-O s. str., a'
,						•	1230	dp	·
	$1215\mathrm{m}$ \wedge	sp		1203m ∧	sp		1200m 🛧	sp	C–O s. str., a_a
1190sh	1182w '	mp			-		1175w '	sp	Alkyl rock
1170sh	1177w	mp	1174sh	1175w	\mathbf{sp}	1171m, sh	1150w	sp	C \check{H} s. bend, a_a
1154s↓		-	$1151s\psi$		•	1151s↓		-	C-H s. bend, a'
			1100sh	1110w	sp	1125w	1122w	\mathbf{sp}	Alkyl CH rock
			$1090 \mathrm{w} \psi$	$1092 { m sh} \psi$	sp	1058m	1061w	dp	Alkyl CH rock
1028m	1031w↓	mр	1033m	$1032 \mathrm{sh} \downarrow$	dp	1021m	$1025\mathrm{w}\psi$	mp	O–R as. str., b_{μ}
	1000m↓	dp		$1025\mathrm{w} ightarrow$	dp		1010vw	dp	
1015sh	995w∱	mp		980w∱	$^{\rm sp}$		985w↑	\overline{mp}	O-R s. str., a_g
976m			975m			975m			C-H def., a_u
	950m ∱	$^{\mathrm{sp}}$		935 vw			949w	$^{\mathrm{sp}}$	Alkyl C–C str.
915w	$912\mathrm{m}$	$^{\mathrm{sp}}$							Alkyl C–C str.
	902w, s h								
	888m 🛧	dp		890w	dp		890w	dp	C—H def., b _g
850sh	$851\mathrm{m}$	$^{\mathrm{sp}}$	856w	$864\mathrm{m}\psi$	$^{\mathrm{sp}}$	835w	$840\mathrm{m}\mathrm{v}$	\mathbf{sp}	C–C s. str., a _g
							808w	$^{\rm mp}$	
770w	780w	dp	771w	782 vw		771w	760 vw		C–C as. str., b _u
661w	745w	$^{\rm sp}$		730 vw	\mathbf{sp}	$734 \mathrm{w}$	735 vw	$^{\mathrm{mp}}$	C=O bend, a_g and b_g
			665 w			667w			C=O bend, a_u and b_u
			650w	650 vw	dp		$650 \mathrm{vw}$	\mathbf{mp}	C-C-O bend, a_g and b_u
				555 vvw			545vw	$^{\mathrm{sp}}$	Alkyl C–C bend
			520w	525 vw			510w	\mathbf{mp}	Alkyl C-C bend
390vw	389vw	sp		384vw	\mathbf{sp}		420w	$^{\mathrm{sp}}$	$C=C-C$ bend, a_g
	330vw	$^{\rm sp}$		348 vw	$^{\mathrm{sp}}$		340w	$^{\mathrm{sp}}$	C-O-R bend, a_g
	275vw, sh	dp		250w	$^{\rm sp}$		225m	$^{\mathrm{sp}}$	Alkyl C-C bend:
	204w	dp		172w	dp				C-OR torsion, b_a

TABLE 1

† sp = strongly polarized; mp = moderately polarized; dp = depolarized.

which should be approximately the same in all three fumarates, and secondly, the normal modes internal to the alkyl group. The latter are not discussed because they are standard to all substituted CH compounds. The skeletal modes of the fumarates depend on the conformations, which may have different symmetries and hence different Raman and i.r. activities.

In the case of the *trans,trans* conformer (I) the symmetry corresponds to the C_{2h} point group and the normal modes divide as $11a_g$ (R.pol.) + $5a_u$ (R.depol.) +

shown in Table 1, the assignments are discussed briefly for particular spectral regions.

3500—2000 cm⁻¹.—The a_g and b_u olefinic CH stretching modes are assigned to bands near 3060 cm⁻¹ in both Raman and i.r. The alkyl CH stretching modes occur between 2800 and 3000 cm⁻¹.

2000—1500 cm⁻¹.—The a_g and the b_u C:O stretching modes are at similar wavenumber values, also indicating little mechanical or electrical interaction between groups. The a_g C:C mode is assigned to strong polarized Raman bands near 1660 cm⁻¹, and the absence of corresponding bands in the i.r. is consistent with the centrosymmetric $C_{2\hbar}$ structure. The satellites at 15 cm⁻¹ below these Raman bands do however have i.r. counterparts. These satellites are absent, or in some cases reduced to very weak bands, in the Raman and i.r. spectra for the solid state. They are, therefore, assigned to the C:C stretching mode of the high energy conformer which is both i.r. and Raman active. associated with a pair of bands near 1300 (low energy conformer) and 1260 cm⁻¹ (high energy conformer) in all three fumarates, whilst the corresponding a_{g} CO stretching modes are associated with a pair near 1220 (high energy conformer, i.r. active only) and 1212 cm⁻¹ (low energy conformer, Raman active only). A third set of conformer pairs occurs near 1170 and 1154 cm⁻¹. The higher wavenumber band is polarized in the Raman but is only observed as a shoulder in the i.r. and is,

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				V	ibrational spec	t r a of n	naleates (v/c	m⁻¹)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Methyl maleate			Ethyl maleate			n-Butyl maleate			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I.r.	Raman	р†	I.r.	Raman	рţ	I.r.	Raman	pt	Assignment
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3440w			3435w			3440w			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3055w	3056m	SD	3055w	3052m	SD	3055w	3050w	SD	CH str.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2995w	3004uw	mp	2975m	2968m	mp	2960m	2955m sh	sp	>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2950w	2952s	sp	2930sh	2932s	SD	2930sh	2924s	sp	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2895sh	2900vw	sp	2895sh	2898w. sh	sp	2890sh	2909s	sp	Alkyl CH str.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2840	2848w	sp	2870sh	2868w sh	5D	2870sh	28685	SD SD	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1730s	1730vs	sp	17255	1725vs	sp	1728s	17255	sp	C=0 str
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		170073	sР	17205	1660m sh	sp	1,200	1,200	чP	0 0 501.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1642w	1645.00	en	1640w	1645	sp	1640	16459	s n	C=C str
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		104075	ър	1470ch	10405	sp	1469.00	10103	зP)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1450	dn	1470511	1450m		1402w	1445m	dn	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1495	1400w	ap	1441	1400111	mp		1440m gh	đp	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	143011	1438w, Sh	шp	1441W	1400m		1400-	1400	up	Alkyl CH bend
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1005		1440111	140011	mр	140211	1400w	mp	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1387m	1387W	mр	138011	1060	mp	107050	1370w, Sh	sp	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1000		1304W	1303W, Sn	\mathbf{mp}	1370SD	1370w, sn	\mathbf{sp}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1296m	1298vw	$^{\mathrm{sp}}$	1294m	1296W	\mathbf{mp}	1290m	1298m	mp	C = 0 as. str.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1011	1270w	mp	1040	1260w, sn	mp	C-H as, bend
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1246m			1244m			1243m	1004 1		j i i
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1000	1000		1005	1224w, sn	dp	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1215s	1215vvw		1208s	1209w	\mathbf{mp}	1207s	1204w, sh		C-O s. str.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1182w, sh	mp							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1160s	1160m	\mathbf{mp}	1156s	1160w	\mathbf{mp}	1161s	1160m	mp	C-H s. bend, OR as.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_						str.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1108sh	1109m	\mathbf{sp}		1116w	$^{\mathrm{sp}}$	Alkyl C-H rock
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1090w	1096m, sh	\mathbf{sp}	10 6 0w	1056w	dp	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 4 w	1002w	mp	1025m	1025w	$d\mathbf{p}$	1020w	10 16 w	$^{\rm mp}$	O–R s. str.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1002sh			Alkyl CC str.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							9 80w			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	990w	987w	mp	970w	975w	\mathbf{mp}	960w	964w	$^{\rm mp}$	Alkyl C–H rock
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	935w	938vw	mp				945w	942 sh	mp	Alkyl C—H rock
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	910w	908w, sh	$^{\rm sp}$		904m	sp	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	880w	885vvw			880w, sh	sp		875w, sh	$s\bar{p}$	Alkyl C–C str.
812w815wmp802w803wspspsp720w725vwdp715w785wsp809w805w, shspC-C as. str.720w725vwdp715w730wdp732vw730vwdpC-H def.600w600wsp590w600wsp588wspC-C-O bend490wsp525wsp528vwspC=O bend460wmp465wmp465vwmpC=C-C bend350wmp385wsp380wspAlkyl C-C bend333wmp320wsp320wspC-O-R bend283wdp272vwmpAlkyl C-C bend283wdp244wmp244wmp244wNumeNume	860w	862vs	Sp	860w	861s	sp	840w	836s	sp	C-C s. str.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	834w	833w	sp			sp	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	812w	815w	mp	802w	800w	sp	809w	805w, sh	sp	C–C as. str.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	790sh	785w	sp			-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	720w	725vw	dp	715w	730w	dp	732vw	730vw	dp	C-H def.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	600w	600w	sp	590w	600w	sp		588w	sp	CCO bend
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		490w	SD.		525w	sn		528vw	sp	C=O bend
460wmp $465w$ mp $465vw$ mp $C=C-C$ bend $350w$ mp $385w$ sp $380w$ spAlkyl C-C ben $333w$ mp $320w$ sp $320w$ sp $C-O-R$ bend $283w$ dp $272vw$ mpAlkyl C-C ben $245w$ mp $244w$ $244w$ Nthe C-C bend		1000	P		500vw	~P	÷.,	500vw	dp	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		460w	mn		465w	mp		465vw	mn	C=C-C bend
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		350w	mp		385w	sn		380w	sn	Alkyl CC bend
283w dp 272vw mp Alkyl C-C ben 244m 244m 244m		333w	mn		320w	SD SD		320w	sn	C - O - R bend
		0001	mp		283w	đn		279.vw	mn	Alkyl C-C bend
740W III) $744W$ TID $744W$ $41FWI - 1000$		94 5w	mn		244w	mn		244w	mP.	Alkyl C-C bend
180 mp 271 mp 271 mp -178 mp -178 mp -0.6 foreign		180ww ch	шÞ		178w	mp		178 yrw ch		C-OR torsion
		1000 0, 511			1100			11044, 51		0 010 10131011

TABLE 2

 \dagger sp = strongly polarized; mp = medium polarized; dp = depolarized.

1500—1000 cm⁻¹.—The various CH₃ and CH₂ bending modes are assigned to bands between 1480 and 1360 cm⁻¹. As in the acrylates and *trans*-crotonates a number of pairs of conformer bands occur between 1300 and 1000 cm⁻¹ for which an accurate description of assignments is not possible. Comparisons of wavenumber values and consideration of Raman and i.r. intensities amongst various fumarates, *trans*-crotonates, and acrylates suggest that the b_u CO stretching mode is therefore, assigned to the a_g CH bending mode. The lower wavenumber band is observed in the i.r. only as a high energy conformer band. It is likely to be the a' CH bending mode of the conformer with C_s symmetry. The similarity of a pattern of five i.r. bands in a range of esters of fumaric acid and of temperature dependences in the methyl, ethyl, and n-butyl compounds has been noted previously.² The additional Raman data in the present work assist the assignments of these bands. Of the four CO and CH modes, only the b_u CH band appears not to split into conformer bands and is assigned to a shoulder near 1270 cm⁻¹ in the i.r.

A prominent pair of conformer bands is observed in the Raman spectrum of dimethyl fumarate at 1031 and 990 cm⁻¹ (the latter is part of a doublet). The lower band has a weak Raman counterpart in the ethyl and n-butyl fumarates; this is also polarized and assigned to the a_u OR stretching mode. The higher band is coincident with medium intensity i.r. bands near 1030 cm⁻¹ which are assigned to the b_u OR stretching mode.

1000—500 cm⁻¹.—Assignment of the a_u out-of-plane CH deformation is well established at 975 cm⁻¹ but that of the corresponding b_g out-of-plane CH deformation is less certain. It is assigned to the medium or weak depolarized Raman band near 890 cm⁻¹ in the fumarates. Both CH o.p. deformation assignments obey the mutual exclusion rule rigorously and the bands occur at somewhat higher values than the corresponding modes in the trans-crotonates. Other fundamentals expected in this region are the a_q and b_u C·C stretching modes. The former is assigned to the medium intensity polarized Raman band near 850 in ethyl and n-butyl fumarate. In methyl fumarate a Raman band at 851 cm⁻¹ appears to be a high energy conformer band and the corresponding low energy conformer band is considered to be superimposed on that assigned to the b_q CH deformation at 888 cm⁻¹. The medium intensity Raman bands near 850 cm⁻¹ all have weak i.r. counterparts, suggesting either that there is no splitting between the a_g and b_u C·C stretching motions, or, more probably, that the selection rules are not rigorously obeyed. In this case the b_u C·C stretching modes are assigned to weak i.r. bands near 770 cm⁻¹ in all three fumarates. The in-plane and out-of-plane C:O bending modes of esters are normally assigned in the 600-700 cm⁻¹ region. The weak i.r. band near 665 cm⁻¹ may be assigned to both the a_u and b_u C.O bending modes. The weak Raman band at 745 and 730 cm⁻¹ in methyl and ethyl fumarate, respectively, may be assigned to the a_g and b_g C:O bending modes.

As in the case of esters of monoacids, assignment to skeletal modes in the 600-100 cm⁻¹ region is only tentative. Bands near 650, 420, and 340 cm⁻¹ are likely to be associated with the various skeletal bending modes and other bands in this region are dependent on the alkyl group and are therefore associated with bending modes of these groups. A full assignment of the interesting torsion modes is postponed until a detailed study of the far-i.r. spectrum is possible in the solid and vapour states.

Maleate Assignments.—On the basis of variabletemperature i.r. studies and from considerations of molecular models, esters of maleic acid were considered to exist in the *cis,trans* form (III). This would correspond to the C_s point group if the system were planar (normally favoured in conjugated systems and in the ester group). The normal modes divide into 21a' (R.pol., i.r.) + 9a'' (R.depol., i.r.) and the approximate forms of these modes together with the observed Raman and i.r. spectra are shown in Table 2. The assignments follow fairly closely from those of the corresponding fumarates except that the a_g and b_u species in the fumarates correspond to the a' species in the maleates, and the b_g and a_u species in the fumarates correspond to the a'' species in the maleates. It follows that all the modes should show i.r. and Raman coincidence and the distinction between symmetric and antisymmetric motions is best made by comparison with the fumarates. The assignments tabulated require no discussion further to the considerations outlined for the fumarates.

FIGURE 1 Raman spectra of butyl fumarate, 1350—1100 cm⁻¹: (a) +119 °C; (b) -8 °C; (c) annealed solid at -30 °C

Conformational Equilibria.—As in the case of esters of monocarboxylic acids, variable-temperature Raman studies are desirable to establish equilibria parameters. Comparison between the Raman spectra of the fumarates as liquids and solids (heated or frozen according to their room temperature state) reveal a number of pairs of conformer bands. High and low energy conformer bands are denoted as (\downarrow) for bands which decrease in relative intensity on cooling and are absent in the solid state after annealing, and as (\uparrow) for bands which increase in relative intensity on cooling. In many cases band overlap precludes accurate measurement. The Raman spectra of n-butyl fumarate in the region 1350—1100 cm⁻¹ at $+119^{\circ}$, at -8° , and as an annealed frozen solid are shown in Figure 1. In the solid certain bands are split, intensified, or shifted to

increased wavenumber value. The strongest band in this region at 1261 cm⁻¹ is absent in the solid. In the liquid the intensity of this band was measured over a 200° temperature range relative to that of the band at 1300 cm⁻¹. A plot of (log $I_{1261} - \log I_{1300}$) against 1/Tprovided a value for ΔH^0 of 396 \pm 42 cal mol⁻¹. This pair of bands corresponds to the conformer pair used for i.r. studies ² to obtain a value for ΔH^0 of 372 \pm 20 cal mol⁻¹. The close agreement provides good support for the existence of an equilibrium with this enthalpy difference.

The Raman spectrum of ethyl fumarate is shown in Figure 2 under similar conditions in the region and temperature ranges in which conformational changes are apparent. Bands in the spectrum of the liquid at 1259, 1092, 1032, and 1025 cm⁻¹ weaken on cooling and are absent in the solid. Measurements of the intensities of the Raman bands at 1300 and 1259 cm⁻¹ were made between -14 and $+152^{\circ}$ leading to a value for ΔH^0 of 219 ± 28 cal mol⁻¹. The Raman spectrum of methyl fumarate is shown in Figure 3 for the region 1325–825 cm⁻¹. Since this is a solid at normal temperatures comparisons are made with melts at 118

FIGURE 2 Raman spectra of ethyl fumarate, 1325-825 cm⁻¹: (a) +126 °C; (b) -3 °C; (c) annealed solid at -21 °C

and 202°. A number of bands in the liquid spectrum are absent from that of the solid (1275, 1261, 1031, 1000, 912, and 851 cm⁻¹). Various pairs were studied

in an endeavour to relate intensity changes with temperature to conformational equilibria, and the most favourable pair was found to be at 950 and 915 cm⁻¹. Intensities of this pair between +112 and $+202^{\circ}$

FIGURE 3 Raman spectra of methyl fumarate, 1325–825 cm⁻¹: (a) 202 °C; (b) 118 °C; (c) annealed solid at 20 °C

provided a value for ΔH^0 of 774 ± 154 cal mol⁻¹. We consider that the large value for the methyl ester in comparison with those for the ethyl and n-butyl esters may be associated with the same stabilizing features which cause this ester to exist as a solid at room temperature, but the detailed relationship between (I) \Longrightarrow (II) and solid \Longrightarrow liquid equilibria is not understood.

Variable-temperature studies of the Raman spectra of the maleates reveal notable differences from the fumarates. On freezing methyl maleate and annealing, a number of solid state spectra were obtained in which there were differences in relative intensities, splittings, and enhancement of weaker bands. Nevertheless, in terms of possible conformational changes, only one very weak liquid band is not observed in the solid (1298 cm⁻¹). In the absence of the many other changes observed in the i.r.² and Raman (Figure 3) spectra of methyl fumarate we assume that the 1295 cm⁻¹ band is weakened owing to a phase-sensitive intensity change rather than a shift in a conformational equilibrium.

Ethyl maleate differs from the methyl compound in providing reproducible solid state spectra. In this case, no liquid bands are absent in the spectrum of the solid. n-Butyl maleate on freezing yields a Raman spectrum which is also very similar to that of the liquid. This evidence, therefore, supports the existence of these three maleate esters in a single conformation, which steric models suggest is the *cis,trans* (III).

[4/1290 Received, 27th June, 1974]